Package: quest 0.2.0
quest: Prepare Questionnaire Data for Analysis
Offers a suite of functions to prepare questionnaire data for analysis (perhaps other types of data as well). By data preparation, I mean data analytic tasks to get your raw data ready for statistical modeling (e.g., regression). There are functions to investigate missing data, reshape data, validate responses, recode variables, score questionnaires, center variables, aggregate by groups, shift scores (i.e., leads or lags), etc. It provides functions for both single level and multilevel (i.e., grouped) data. With a few exceptions (e.g., ncases()), functions without an "s" at the end of their primary word (e.g., center_by()) act on atomic vectors, while functions with an "s" at the end of their primary word (e.g., centers_by()) act on multiple columns of a data.frame.
Authors:
quest_0.2.0.tar.gz
quest_0.2.0.zip(r-4.5)quest_0.2.0.zip(r-4.4)quest_0.2.0.zip(r-4.3)
quest_0.2.0.tgz(r-4.4-any)quest_0.2.0.tgz(r-4.3-any)
quest_0.2.0.tar.gz(r-4.5-noble)quest_0.2.0.tar.gz(r-4.4-noble)
quest_0.2.0.tgz(r-4.4-emscripten)quest_0.2.0.tgz(r-4.3-emscripten)
quest.pdf |quest.html✨
quest/json (API)
# Install 'quest' in R: |
install.packages('quest', repos = c('https://ddisab01.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 months agofrom:1568a5217f. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | NOTE | Nov 08 2024 |
R-4.5-linux | NOTE | Nov 08 2024 |
R-4.4-win | OK | Nov 08 2024 |
R-4.4-mac | OK | Nov 08 2024 |
R-4.3-win | OK | Nov 08 2024 |
R-4.3-mac | OK | Nov 08 2024 |
Exports:.cronbach.cronbachs.gtheory.gtheorysadd_sigadd_sig_coraggagg_dfmaggsamd_biamd_multiamd_uniauto_byave_dfmboot_ciby2centercenter_bycenterscenters_bychangechange_bychangeschanges_bycolMeans_ifcolNAcolSums_ifcompositecompositesconfint2confint2.bootconfint2.defaultcor_bycor_misscor_mlcorpcorp_bycorp_misscorp_mlcovs_testcronbachcronbachsdecomposedecomposesdeffdeffsdescribe_mldum2nomfreqfreq_byfreqsfreqs_bygtheorygtheory_mlgtheorysgtheorys_mlicc_11icc_all_byiccs_11length_bylengths_bylong2widemake.dummymake.dumNAmake.fun_ifmake.latentmake.productmean_changemean_comparemean_diffmean_ifmean_testmeans_changemeans_comparemeans_diffmeans_testmode2n_comparencasesncases_byncases_descncases_mlngrpnhstnom2dumnrow_bynrow_mlpartial.casespomppompsprop_compareprop_diffprop_testprops_compareprops_diffprops_testrecode2otherrecodesrenamesreordersrevalidrevalidsreversereversesrowMeans_ifrowNArowsNArowSums_ifscorescoresshiftshift_byshiftsshifts_bysum_ifsummary_ucfatapply2ucfavalid_testvalids_testvecNAwide2longwinsorwinsors
Dependencies:abindarmbackportsBHbootbroomcarcarDatacheckmateclicodacolorspacecowplotcpp11DerivdigestdoBydplyrfansifarverFormulagenericsggplot2glueGPArotationgtableisobandlabelinglatticelavaanlifecyclelme4magrittrMASSMatrixMatrixModelsMBESSmgcvmimicrobenchmarkminqamnormtmodelrmultilevelmunsellmvtnormnlmenloptrnnetnumDerivOpenMxpbivnormpbkrtestpillarpkgconfigplyrpsychpurrrquadprogquantregR6RColorBrewerRcppRcppEigenRcppParallelreshaperlangrpfscalessemsemToolsSparseMStanHeadersstr2strstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr